...
Section | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Importing interpretation from external files
...
The value of the amplitude spectrum at a specific frequency calculated by as Short Time Fourier Transform.
User-defined Function
Lets the user specify a mathematical function of the original seismic and the position of the sample in question.
For example you could use the function "abs(s)" to find the absolute value of the seismic.
From the Variables drop-down list you can choose from different variables such as I, inline trace position. Hoovering over a variable name brings up a description.
From the Functions drop-down list you can choose from many different mathematical functions such as abs(). Hoovering over a function name brings up a description.
Dip and Coherence
Right-clicking on a Seismic Line or a Seismic Brick Cube and selecting "Seismic Trace Attributes..." pops up the following dialog:
...
The Dip and Coherence process estimate the surface normal G=[Gx,Gy,Gt] at each sample in the seismic from an image a statistical analysis of the samples in a window around the sample in question.
If there happen to be a minima or maxima at the sample; this surface normal will point in the same direction as the normal to the interpreted horizon going trough the sample. If not one can still imagine an implicit surface; where the seismic amplitude is constant.
From the surface normal: the following are calculated:
InlDip=Gx/Gt
CrlDip=Gy/Gt
Estimate surface normal ├ G┴⇀=[Gx,Gy,Gt ] directly from seismic for every seismic sample.
The Coherence attribute is a byproduct of the dip telling us how reliable the InlDip and CrlDip estimates are:
The InlDip in a point (black circle) is the ratio of the inline, x, component of the surface normal to the t component of the surface normal, G (black vector) and therefore a measure of how much the implicit surface (green line) is dipping relative to the horizontal (blue line).
Since the dip is calculated over a window the result is some form of average over the window and as a byproduct we therefore get Coherence which is a measure of how much the samples in the window are in accordance with this average, or how reliable the dip estimates are:
0 <= Coherence <=1, where 1: absolute certain.
But it Coherence can also be viewed as a measure of "order" in the seismic. A non chaotic region of the seismic will have a high coherence, whereas a chaotic region, e.g. inside a salt, will have a low coherence.
A Seismic Line (left), its Dip (middle) and its Coherence (right).
Seismic Attribute Calculator
Right-clicking on a Seismic Line or a Seismic Brick Cube and selecting "Seismic Attribute Calculator..." pops up the following dialog:
The Seismic Attribute Calculator makes it possible to combine Seismic + up to 3 Seismic Attributes into a weighted combined Attribute.
From the Variables drop-down list you can choose from different variables such as I, inline trace position. Hoovering over a variable name brings up a description.
From the Functions drop-down list you can choose from many different mathematical functions such as abs(). Hoovering over a function name brings up a description.